RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2005, том 10, выпуск 1, страницы 81–93 (Mi rcd698)

Эта публикация цитируется в 8 статьях

On the Steklov case in rigid body dynamics

A. P. Markeev

Institute of Problems in Mechanics, Russian Academy of Sciences, 101, Vernadsky av., 119526 Moscow, Russia

Аннотация: We study the motion of a heavy rigid body with a fixed point. The center of mass is located on mean or minor axis of the ellipsoid of inertia, with the moments of inertia satisfying the conditions $B>A>2C$ or $2B>A>B>C$, $A>2C$ as well as the usual triangle inequalities. Under these circumstances the Euler–Poisson equations have the particular periodic solutions mentioned by V. A. Steklov. We examine the problem of the orbital stability of the periodic motions of a rigid body, which correspond to the Steklov solutions.

Ключевые слова: rigid body dynamics, Euler–Poisson equations, Steklov solutions, orbital stability of the periodic motions.

MSC: 70E17, 70E50

Поступила в редакцию: 21.09.2004
Принята в печать: 26.01.2005

Язык публикации: английский

DOI: 10.1070/RD2005v010n01ABEH000302



Реферативные базы данных:


© МИАН, 2024