RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2005, том 10, выпуск 1, страницы 113–118 (Mi rcd700)

Sweep out and chaos

H. Wanga, J. Xiongb

a Department of Mathematics, Guangzhou University, 248, Guangyanan Middle Rd, 510405 Guangzhou, China
b Department of Mathematics, South China Normal University, Shipai, 510631 Guangzhou, China

Аннотация: Let $X$ be a compact metric space and let $\mathscr{B}$ be a $\sigma$-algebra of all Borel subsets of $X$. Let $m$ be a probability outer measure on $X$ with the properties that each non-empty open set has non-zero m-measure and every open set is $m$-measurable. And for every subset $Y$ of $X$ there is a Borel set $B$ of $X$ such that $Y \subset B$ and $m(Y) = m(B)$. We prove that $f : (X, \mathscr{B},m) \to (X,B,m)$ sweeps out if and only if for any increasing sequence $J$ of positive integers, there is a finitely chaotic set $C$ for $f$ with respect to $J$ such that $m(C)=1$.

Ключевые слова: sweep out, chaos, measure.

MSC: 28A78

Поступила в редакцию: 01.03.2005
Принята в печать: 21.03.2005

Язык публикации: английский

DOI: 10.1070/RD2005v010n01ABEH000304



Реферативные базы данных:


© МИАН, 2024