RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2005, том 10, выпуск 2, страницы 153–171 (Mi rcd704)

Эта публикация цитируется в 24 статьях

150th anniversary of H. Poincaré

Construction of Kolmogorov's normal form for a planetary system

U. Locatellia, A. Giorgillib

a Dipartimento di Matematica, Università degli Studi di Roma "Tor Vergata", Via della Ricerca Scientifica 1, 00133 Roma, Italy
b Dipartimento di Matematica e Applicazioni, Università degli Studi di Milano Bicocca, Via R. Cozzi 53, 20125 Milano, Italy

Аннотация: We describe an algorithm constructing an invariant KAM torus for a class of planetary systems, such that the mutual attractions, the eccentricities and the inclinations of the planets are small enough. By using computer algebra, we explicitly implement this algorithm for approximating a KAM torus for the problem of three bodies in a case similar to the Sun–Jupiter–Saturn system. We show that, by reducing the masses of the planets by a factor 10 and with a small displacement of the orbits, our semianalytical construction of the torus turns out to be successful.

Ключевые слова: three-body problem, $n$-body problem, KAM theory, perturbation methods, Hamiltonian systems, celestial mechanics.

MSC: 70F07, 70F10, 37J40, 37N05, 70–08, 70H08

Поступила в редакцию: 06.04.2005
Принята в печать: 03.06.2005

Язык публикации: английский

DOI: 10.1070/RD2005v010n02ABEH000309



Реферативные базы данных:


© МИАН, 2024