RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2005, том 10, выпуск 3, страницы 257–266 (Mi rcd709)

Эта публикация цитируется в 15 статьях

150th anniversary of H. Poincaré

Superintegrable systems on a sphere

A. V. Borisov, I. S. Mamaev

Institute of Computer Science, Udmurt State University, 1 Universitetskaya str., 426034 Izhevsk, Russia

Аннотация: We consider various generalizations of the Kepler problem to three-dimensional sphere $S^3$, (a compact space of constant curvature). In particular, these generalizations include addition of a spherical analogue of the magnetic monopole (the Poincaré–Appell system) and addition of a more complicated field which is a generalization of the MICZ-system. The mentioned systems are integrable superintegrable, and there exists the vector integral which is analogous to the Laplace–Runge–Lenz vector. We offer a classification of the motions and consider a trajectory isomorphism between planar and spatial motions. The presented results can be easily extended to Lobachevsky space $L^3$.

Ключевые слова: spaces of constant curvature, Kepler problem, integrability.

MSC: 37N05, 70F10

Поступила в редакцию: 25.10.2004
Принята в печать: 15.02.2005

Язык публикации: английский

DOI: 10.1070/RD2005v010n03ABEH000314



Реферативные базы данных:


© МИАН, 2025