RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2005, том 10, выпуск 3, страницы 267–284 (Mi rcd710)

Эта публикация цитируется в 24 статьях

150th anniversary of H. Poincaré

Periodic flows, rank-two Poisson structures, and nonholonomic mechanics

F. Fassò, A. Giacobbe, N. Sansonetto

Dipartimento di Matematica Pura e Applicata, Università di Padova, Via G. Belzoni 7, 35131 Padova, Italy

Аннотация: It has been recently observed that certain (reduced) nonholonomic systems are Hamiltonian with respect to a rank-two Poisson structure. We link the existence of these structures to a dynamical property of the (reduced) system: its periodicity, with positive period depending continuously on the initial data. Moreover, we show that there are in fact infinitely many such Poisson structures and we classify them. We illustrate the situation on the sample case of a heavy ball rolling on a surface of revolution.

Ключевые слова: Poisson structures, non-holonomic systems, periodic flows.

MSC: 53D17, 37J60

Поступила в редакцию: 22.04.2005
Принята в печать: 15.05.2005

Язык публикации: английский

DOI: 10.1070/RD2005v010n03ABEH000315



Реферативные базы данных:


© МИАН, 2025