RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2016, том 21, выпуск 2, страницы 175–188 (Mi rcd73)

Эта публикация цитируется в 4 статьях

Superintegrable Cases of Four-dimensional Dynamical Systems

Oğul Esena, Anindya Ghose Choudhurb, Partha Guhac, Hasan Gümrald

a Department of Mathematics, Gebze Technical University, Gebze-Kocaeli, 41400, Turkey
b Department of Physics, Surendranath College, 24/2 Mahatma Gandhi Road, Calcutta, 700009, India
c Bose National Centre for Basic Sciences, JD Block, Sector III, Salt Lake, Kolkata, 700098, India
d Australian College of Kuwait, West Mishref, Kuwait

Аннотация: Degenerate tri-Hamiltonian structures of the Shivamoggi and generalized Raychaudhuri equations are exhibited. For certain specific values of the parameters, it is shown that hyperchaotic Lü and Qi systems are superintegrable and admit tri-Hamiltonian structures.

Ключевые слова: first integrals, Darboux polynomials, Jacobi’s last multiplier, 4D Poisson structures, tri-Hamiltonian structures, Shivamoggi equations, generalized Raychaudhuri equations, Lü system and Qi system.

MSC: 34C14, 34C20

Поступила в редакцию: 30.10.2015
Принята в печать: 04.02.2016

Язык публикации: английский

DOI: 10.1134/S1560354716020039



Реферативные базы данных:


© МИАН, 2024