RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2004, том 9, выпуск 2, страницы 77–89 (Mi rcd733)

Эта публикация цитируется в 12 статьях

On the Steklov–Lyapunov case of the rigid body motion

A. V. Tsiganov

Department of Mathematical and Computational Physics V.A. Fock Institute of Physics, St.Petersburg State University, 198504, St.Petersburg, Russia

Аннотация: We construct a Poisson map between manifolds with linear Poisson brackets corresponding to the two samples of Lie algebra $e(3)$. Using this map we establish equivalence of the Steklov–Lyapunov system and the motion of a particle on the surface of the sphere under the influence of the fourth order potential. To study separation of variables for the Steklov case on the Lie algebra $so(4)$ we use the twisted Poisson map between the bi-Hamiltonian manifolds $e(3)$ and $so(4)$.

MSC: 37K10, 53D22, 70E40

Поступила в редакцию: 10.06.2004

Язык публикации: английский

DOI: 10.1070/RD2004v009n02ABEH000267



Реферативные базы данных:


© МИАН, 2024