RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2004, том 9, выпуск 3, страницы 213–226 (Mi rcd743)

Эта публикация цитируется в 34 статьях

Effective computations in modern dynamics

Geometric integration via multi-space

P. Kim, P. J. Olver

Department of Mathematics, University of Minnesota, MN 55455, USA

Аннотация: We outline a general construction of symmetry-preserving numerical schemes for ordinary differential equations. The method of invariantization is based on the equivariant moving frame theory applied to prolonged symmetry group actions on multi-space, which has been proposed as the proper geometric setting for numerical analysis. We explain how to invariantize standard numerical integrators such as the Euler and Runge–Kutta schemes; in favorable situations, the resulting symmetry-preserving geometric integrators offer significant advantages.

MSC: 65L05, 34A26, 53A55, 65L06, 22E70

Поступила в редакцию: 20.08.2004

Язык публикации: английский

DOI: 10.1070/RD2004v009n03ABEH000277



Реферативные базы данных:


© МИАН, 2024