RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2004, том 9, выпуск 3, страницы 255–264 (Mi rcd745)

Эта публикация цитируется в 17 статьях

Effective computations in modern dynamics

Poisson integrator for symmetric rigid bodies

H. R. Dullin

Department of Mathematical Sciences, Loughborough University, LE11 3TU, UK

Аннотация: We derive an explicit second order reversible Poisson integrator for symmetric rigid bodies in space (i.e. without a fixed point). The integrator is obtained by applying a splitting method to the Hamiltonian after reduction by the $S^1$ body symmetry. In the particular case of a magnetic top in an axisymmetric magnetic field (i.e. the Levitron) this integrator preserves the two momentum integrals. The method is used to calculate the complicated boundary of stability near a linearly stable relative equilibrium of the Levitron with indefinite Hamiltonian.

MSC: 70E15, 65P10, 37J25

Поступила в редакцию: 30.09.2004

Язык публикации: английский

DOI: 10.1070/RD2004v009n03ABEH000279



Реферативные базы данных:


© МИАН, 2024