RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2004, том 9, выпуск 4, страницы 417–438 (Mi rcd754)

Эта публикация цитируется в 13 статьях

Effective computations in modern dynamics

Dynamics of three vortices in a two-layer rotating fluid

M. A. Sokolovskiyab, J. Verronc

a Water Problems Institute, Russian Academy of Sciences, 3, Gubkina Str., GSP-1, 119991, Moscow, Russia
b Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, 16, S. Kovalevskaja Str., GSP-384, 620219, Ekaterinburg, Russia
c Laboratoire des Ecoulements Géophysiques er Industriels (LEGI), UMR 5519, CNRS, BP53 X, 38041, Grenoble Cedex, France

Аннотация: The problem of studying the motion of three vortex lines with arbitrary intensities in an unbounded two-dimensional finite-thickness layer of a homogeneous fluid is known [25], [9], [28], [1] to belong to the class of integrable problems. However, a complete classification of possible motions was constructed only recently [10], [28], [41]. In [40], [39], [20] a generalization is given for two-layer rotating fluid in the particular case determined by the conditions of (i) zero total circulation of vortices, and (ii) the equality of the intensities of two vortices. Here, the first of these restrictions is lifted.

MSC: 37J35, 76B47, 76B70

Поступила в редакцию: 01.10.2004

Язык публикации: английский

DOI: 10.1070/RD2004v009n04ABEH000288



Реферативные базы данных:


© МИАН, 2024