Аннотация:
We show that absolute focusing is a necessary condition for a focusing component to be a part of the boundary of a hyperbolic billiard. A sketch of the proof of a general theorem on hyperbolicity and ergodicity of two-dimensional billiards with all three (focusing, dispersing and neutral) components of the boundary is given. The example of a simply connected domain (container) is given, where a system of $N$ elastically colliding balls is ergodic for any $1 \leqslant N < \infty$.