RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2003, том 8, выпуск 2, страницы 191–200 (Mi rcd776)

Эта публикация цитируется в 5 статьях

Families of multi-round homoclinic and periodic orbits near a saddle-center equilibrium

O. Yu. Koltsova

Dept. of Comput. Math. and Cybernetics, Nizhny Novgorod State University, 23 Gagarin Ave., 603600 Nizhny Novgorod, Russia

Аннотация: We consider a real analytic two degrees of freedom Hamiltonian system possessing a homoclinic orbit to a saddle-center equilibrium $p$ (two nonzero real and two nonzero imaginary eigenvalues). We take a two-parameter unfolding for such a system and show that in the case of nonresonance there are countable sets of multi-round homoclinic orbits to $p$. We also find families of periodic orbits, accumulating a the homoclinic orbits.

MSC: 37J45, 37G99

Поступила в редакцию: 17.12.2002

Язык публикации: английский

DOI: 10.1070/RD2003v008n02ABEH000240



Реферативные базы данных:


© МИАН, 2024