RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2003, том 8, выпуск 2, страницы 225–241 (Mi rcd779)

Эта публикация цитируется в 3 статьях

Search light in billiard tables

N. Chernova, G. A. Galperinb

a Department of Mathematics, University of Alabama at Birmingham, Birmingham, AL 35294
b Department of Mathematics, Eastern Illinois University, Charleston, IL 61920

Аннотация: We investigate whether a search light, $S$, illuminating a tiny angle ("quot") with vertex $A$ inside a bounded region $Q \in \mathbb{R}^2$ with the mirror boundary $\partial Q$, will eventually illuminate the entire region $Q$. It is assumed that light rays hitting the corners of $Q$ terminate. We prove that: (I) if $Q= a$ circle or an ellipse, then either the entire $Q$ or an annulus between two concentric circles/confocal ellipses (one of which is $\partial Q$) or the region between two confocal hyperbolas will be illuminated; (II) if $Q= a$ square, or (III) if $Q= a$ dispersing (Sinai) or semidespirsing billiards, then the entire region $Q$ is will be illuminated.

MSC: 37D50

Поступила в редакцию: 07.04.2003

Язык публикации: английский

DOI: 10.1070/RD2003v008n02ABEH000239



Реферативные базы данных:


© МИАН, 2024