RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2002, том 7, выпуск 1, страницы 21–30 (Mi rcd799)

Эта публикация цитируется в 6 статьях

Nonholonomic Systems

Generalization of the Goryachev–Chaplygin Case

A. V. Borisova, I. S. Mamaevb

a Department of Theoretical Mechanics, Moscow State University, Vorob'ievy Gory, 119899, Moscow, Russia
b Laboratory of Dynamical Chaos and Nonlinearity, Udmurt State University, Universitetskaya, 1, 426034, Izhevsk, Russia

Аннотация: In this paper we present a generalization of the Goryachev–Chaplygin integrable case on a bundle of Poisson brackets, and on Sokolov terms in his new integrable case of Kirchhoff equations. We also present a new analogous integrable case for the quaternion form of rigid body dynamics equations. This form of equations is recently developed and we can use it for the description of rigid body motions in specific force fields, and for the study of different problems of quantum mechanics. In addition we present new invariant relations in the considered problems.

MSC: 37J35, 70E17

Поступила в редакцию: 20.12.2001

Язык публикации: английский

DOI: 10.1070/RD2002v007n01ABEH000192



Реферативные базы данных:


© МИАН, 2024