RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2014, том 19, выпуск 6, страницы 601–606 (Mi rcd8)

Эта публикация цитируется в 23 статьях

On Rational Integrals of Geodesic Flows

Valery V. Kozlov

Steklov Mathematical Institute, Russian Academy of Sciences, ul. Gubkina 8, Moscow, 119991 Russia

Аннотация: This paper is concerned with the problem of first integrals of the equations of geodesics on two-dimensional surfaces that are rational in the velocities (or momenta). The existence of nontrivial rational integrals with given values of the degrees of the numerator and the denominator is proved using the Cauchy–Kovalevskaya theorem.

Ключевые слова: conformal coordinates, rational integral, irreducible integrals, Cauchy–Kovalevskaya theorem.

MSC: 34A34, 58E10

Поступила в редакцию: 29.09.2014
Принята в печать: 17.10.2014

Язык публикации: английский

DOI: 10.1134/S156035471406001X



Реферативные базы данных:


© МИАН, 2024