Аннотация:
A two-layer quasigeostrophic model is considered in the $f$-plane approximation. The stability of a discrete axisymmetric vortex structure is analyzed for the case when the structure consists of a central vortex of arbitrary intensity $\Gamma$ and two/three identical peripheral vortices. The identical vortices, each having a unit intensity, are uniformly distributed over a circle of radius $R$ in a single layer. The central vortex lies either in the same or in another layer. The problem has three parameters $(R, \Gamma, \alpha)$, where $\alpha$ is the difference between layer thicknesses. A limiting case of a homogeneous fluid is also considered.
The theory of stability of steady-state motions of dynamic systems with a continuous symmetry group $\mathcal{G}$ is applied. The two definitions of stability used in the study are Routh stability and $\mathcal{G}$-stability. The Routh stability is the stability of a one-parameter orbit of a steady-state rotation of a vortex multipole, and the $\mathcal{G}$-stability is the stability of a three-parameter invariant set $O_{\mathcal{G}}$, formed by the orbits of a continuous family of steady-state rotations of a multipole. The problem of Routh stability is reduced to the problem of stability of a family of equilibria of a Hamiltonian system. The quadratic part of the Hamiltonian and the eigenvalues of the linearization matrix are studied analytically.
The cases of zero total intensity of a tripole and a quadrupole are studied separately. Also, the Routh stability of a Thomson vortex triangle and square was proved at all possible values of problem parameters. The results of theoretical analysis are sustained by numerical calculations of vortex trajectories.