RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2016, том 21, выпуск 3, страницы 351–366 (Mi rcd82)

Эта публикация цитируется в 6 статьях

Multi-particle Dynamical Systems and Polynomials

Maria V. Demina, Nikolai A. Kudryashov

National Research Nuclear University “MEPhI”, Kashirskoe sh. 31, Moscow, 115409, Russia

Аннотация: Polynomial dynamical systems describing interacting particles in the plane are studied. A method replacing integration of a polynomial multi-particle dynamical system by finding polynomial solutions of partial differential equations is introduced. The method enables one to integrate a wide class of polynomial multi-particle dynamical systems. The general solutions of certain dynamical systems related to linear second-order partial differential equations are found. As a by-product of our results, new families of orthogonal polynomials are derived.

Ключевые слова: multi-particle dynamical systems, polynomial solutions of partial differential equations, orthogonal polynomials.

MSC: 12D10, 35Q51

Поступила в редакцию: 11.12.2015
Принята в печать: 06.05.2016

Язык публикации: английский

DOI: 10.1134/S1560354716030072



Реферативные базы данных:


© МИАН, 2024