RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2002, том 7, выпуск 4, страницы 351–391 (Mi rcd824)

Эта публикация цитируется в 2 статьях

A New Class of Reflectionless Second-order $\mathrm{A} \Delta \mathrm{Os}$ and Its Relation to Nonlocal Solitons

S. N. M. Ruijsenaars

Centre for Mathematics and Computer Science, P.O.Box 94079, 1090 GB Amsterdam, The Netherlands

Аннотация: We study an extensive class of second-order analytic difference operators admitting reflectionless eigenfunctions. The eigenvalue equation for our $\mathrm{A} \Delta \mathrm{Os}$may be viewed as an analytic analog of a discrete spectral problem studied by Shabat. Moreover, the nonlocal soliton evolution equation we associate to the $\mathrm{A} \Delta \mathrm{Os}$ is an analytic version of a discrete equation Boiti and coworkers recently associated to Shabat's problem. We show that our nonlocal solitons $G(x,t)$ are positive for $(x,t) \in \mathbb{R}^2$ and obtain evidence that the corresponding $\mathrm{A} \Delta \mathrm{Os}$ can be reinterpreted as self-adjoint operators on $L^2(\mathbb{R},dx)$. In a suitable scaling limit the KdV solitons and reflectionless Schrodinger operators arise.

MSC: 58F07, 58F05, 35Q53, 14G32

Поступила в редакцию: 17.03.2002

Язык публикации: английский

DOI: 10.1070/RD2002v007n04ABEH000217



Реферативные базы данных:


© МИАН, 2024