RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2001, том 6, выпуск 1, страницы 1–16 (Mi rcd829)

Эта публикация цитируется в 11 статьях

Kovalevskaya Top and Generalizations of Integrable Systems

A. V. Borisova, I. S. Mamaevb, A. G. Kholmskayac

a Department of Theoretical Mechanics, Moscow State University, Vorob'ievy Gory, 119899, Moscow, Russia
b Laboratory of Dynamical Chaos and Nonlinearity, Udmurt State University, Universitetskaya, 1, 426034, Izhevsk, Russia
c Udmurt State University, Universitetskaya, 1, 426034, Izhevsk, Russia

Аннотация: Generalizations of the Kovalevskaya, Chaplygin, Goryachev–Chaplygin and Bogoyavlensky systems on a bundle are considered in this paper. Moreover, a method of introduction of separating variables and action-angle variables is described. Another integration method for the Kovalevskaya top on the bundle is found. This method uses a coordinate transformation that reduces the Kovalevskaya system to the Neumann system. The Kolosov analogy is considered. A generalization of a recent Gaffet system to the bundle of Poisson brackets is obtained at the end of the paper.

MSC: 70E17, 70G40

Поступила в редакцию: 12.12.2000

Язык публикации: английский

DOI: 10.1070/RD2001v006n01ABEH000161



Реферативные базы данных:


© МИАН, 2024