RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2001, том 6, выпуск 2, страницы 205–210 (Mi rcd838)

Эта публикация цитируется в 19 статьях

The Riemannium

P. Leboeuf, A. Monastra, O. Bohigas

Laboratoire de Physique Théorique et Modèles Statistiques, Unité Mixte de Recherche de l'Université Paris XI et du CNRS Bât. 100, Université de Paris-Sud, 91405 Orsay Cedex, France

Аннотация: The properties of a fictitious, fermionic, many-body system based on the complex zeros of the Riemann zeta function are studied. The imaginary part of the zeros are interpreted as mean-field single-particle energies, and one fills them up to a Fermi energy $E_F$. The distribution of the total energy is shown to be non-Gaussian, asymmetric and independent of $E_F$ in the limit $E_F \to \infty$. The moments of the limit distribution are computed analytically. The autocorrelation function, the finite energy corrections, and a comparison with random matrix theory are also discussed.

MSC: 11M26, 82B44

Поступила в редакцию: 21.03.2001

Язык публикации: английский

DOI: 10.1070/RD2001v006n02ABEH000170



Реферативные базы данных:


© МИАН, 2024