RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2001, том 6, выпуск 3, страницы 277–290 (Mi rcd845)

Эта публикация цитируется в 2 статьях

On the Dynamical Meaning of the Picard–Vessiot Theory

Juan J. Morales-Ruiz, Josep Maria Peris

Departament de Matemàtica Aplicada II, Universitat Politècnica de Catalunya, Pau Gargallo 5, E-08028 Barcelona, Spain

Аннотация: In this paper we present a dynamical interpretation of the Differential Galois Theory of Linear Differential Equations (also called the Picard-Vessiot Theory). The key point is that when a linear differential equation is not solvable in closed form then by a theorem of Tits the monodromy group for fuchsian equations (or a generalization of it for irregular singularities: the Ramis monodromy group) contains a free non-abelian group. Roughly this free group gives us a very complicated dynamics on some suitable spaces.

MSC: 12H05, 34K23, 34M35

Поступила в редакцию: 01.08.2000

Язык публикации: английский

DOI: 10.1070/RD2001v006n03ABEH000177



Реферативные базы данных:


© МИАН, 2024