RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2001, том 6, выпуск 3, страницы 307–326 (Mi rcd847)

Эта публикация цитируется в 8 статьях

On the Invariant Separated Variables

A. V. Tsiganov

Department of Mathematical and Computational Physics, Institute of Physics, St. Petersburg University, 198904, St. Petersburg, Russia

Аннотация: An integrable Hamiltonian system on a Poisson manifold consists of a Lagrangian foliation $\mathscr{F}$ and a Hamilton function $H$. The invariant separated variables are independent on values of integrals of motion and Casimir functions. It means that they are invariant with respect to abelian group of symplectic diffeomorphisms of $\mathscr{F}$ and belong to the invariant intersection of all the subfoliations of $\mathscr{F}$. In this paper we show that for many known integrable systems this invariance property allows us to calculate their separated variables explicitly.

MSC: 37K10, 37K30

Поступила в редакцию: 20.06.2001

Язык публикации: английский

DOI: 10.1070/RD2001v006n03ABEH000179



Реферативные базы данных:


© МИАН, 2024