RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2000, том 5, выпуск 1, страницы 95–106 (Mi rcd864)

Эта публикация цитируется в 12 статьях

150th anniversary of S.V. Kovalevskaya

Kovalevskaya Rods and Kovalevskaya Waves

A. Gorielya, M. Nizetteb

a Department of Mathematics, and Program in Applied Mathematics, University of Arizona, Building 89, Tucson, AZ85721, USA
b Université Libre de Bruxelles, Faculté des Sciences CP165

Аннотация: The Kirchhoff analogy for elastic rods establishes the equivalence between the solutions of the classical spinning top and the stationary solutions of the Kirchhoff model for thin elastic rods with circular cross-sections. In this paper the Kirchhoff analogy is further generalized to show that the classical Kovalevskaya solution for the rigid body problem is formally equivalent to the solution of the Kirchhoff model for thin elastic rod with anisotropic cross-sections (elastic strips). These Kovalevskaya rods are completely integrable and are part of a family of integrable travelling waves solutions for the rod (Kovalevskaya waves). The analysis of homoclinic twistless Kovalevskaya rod reveals the existence of a three parameter family of solutions corresponding to the Steklov and Bobylev integrable case of the rigid body problem. Furthermore, the existence of these integrable solutions is discussed in conjunction with recent results on the stability of strips.

MSC: 58F99

Поступила в редакцию: 08.09.1999

Язык публикации: английский

DOI: 10.1070/RD2000v005n01ABEH000126



Реферативные базы данных:


© МИАН, 2024