RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2000, том 5, выпуск 2, страницы 139–156 (Mi rcd868)

Эта публикация цитируется в 6 статьях

Infinite Number of Homoclinic Orbits to Hyperbolic Invariant Tori of Hamiltonian Systems

S. V. Bolotin

Department of Mathematics and Mechanics, Moscow State University, Vorob'ievy Gory, 119899, Moscow, Russia

Аннотация: A time-periodic Hamiltonian system on a cotangent bundle of a compact manifold with Hamiltonian strictly convex and superlinear in the momentum is studied. A hyperbolic Diophantine nondegenerate invariant torus $N$ is said to be minimal if it is a Peierls set in the sense of the Aubry–Mather theory. We prove that $N$ has an infinite number of homoclinic orbits. For any family of homoclinic orbits the first and the last intersection point with the boundary of a tubular neighborhood $U$ of $N$ define sets in $U$. If there exists a compact family of minimal homoclinics defining contractible sets in $U$, we obtain an infinite number of multibump homoclinic, periodic and chaotic orbits. The proof is based on a combination of variational methods of Mather and a generalization of Shilnikov's lemma.

MSC: 58F05, 58F08

Поступила в редакцию: 01.03.2000

Язык публикации: английский

DOI: 10.1070/RD2000v005n02ABEH000137



Реферативные базы данных:


© МИАН, 2025