RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2000, том 5, выпуск 3, страницы 251–272 (Mi rcd879)

Эта публикация цитируется в 24 статьях

Kovalevskaya, Liapounov, Painleve, Ziglin and the Differential Galios Theory

J. J. Morales-Ruiz

Departament de Matemàtica Aplicada II, Universitat Politècnica de Catalunya, Pau Gargallo 5, E-08028 Barcelona, Spain

Аннотация: We give a review about the integrability of complex analytical dynamical systems started with the works of Kovalevskaya, Liapounov and Painleve as well as by Picard and Vessiot at the end of the XIX century. In particular, we state a new result which generalize a theorem of Ramis and the author. This last theorem is itself a generalization of Ziglin's non-integrability theorem about the monodromy group of the first order variational equation. Also we try to point out some ideas about the connection of the above results with the Painleve property.

MSC: 34G20, 34L40

Поступила в редакцию: 28.07.2000

Язык публикации: английский

DOI: 10.1070/RD2000v005n03ABEH000148



Реферативные базы данных:


© МИАН, 2024