RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2000, том 5, выпуск 4, страницы 459–476 (Mi rcd890)

Эта публикация цитируется в 9 статьях

On Scaling Properties of Two-Dimensional Maps Near the Accumulation Point of the Period-Tripling Cascade

O. B. Isaeva, S. P. Kuznetsov

Institute of Radio-Engineering and Electronics of RAS, Zelenaya 38, Saratov, 410019, Russia

Аннотация: We analyse dynamics generated by quadratic complex map at the accumulation point of the period-tripling cascade (see Golberg, Sinai, and Khanin, Usp. Mat. Nauk. V. 38, № 1, 1983, 159; Cvitanovic; and Myrheim, Phys. Lett. A94, № 8, 1983, 329). It is shown that in general this kind of the universal behavior does not survive the translation two-dimensional real maps violating the Cauchy–Riemann equations. In the extended parameter space of the two-dimensional maps the scaling properties are determined by two complex universal constants. One of them corresponds to perturbations retaining the map in the complex-analytic class and equals $\delta_1 \cong 4.6002 - 8.9812i$ in accordance with the mentioned works. The second constant $\delta_2 \cong 2.5872 + 1.8067i$ is responsible for violation of the analyticity. Graphical illustrations of scaling properties associated with both these constants are presented. We conclude that in the extended parameter space of the two-dimensional maps the period tripling universal behavior appears as a phenomenon of codimension $4$.

MSC: 58F36

Поступила в редакцию: 19.09.2000

Язык публикации: английский

DOI: 10.1070/RD2000v005n04ABEH000159



Реферативные базы данных:


© МИАН, 2024