RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 1999, том 4, выпуск 1, страницы 23–50 (Mi rcd893)

Эта публикация цитируется в 25 статьях

Lie algebras in vortex dynamics and celestial mechanics — IV

A. V. Bolsinova, A. V. Borisova, I. S. Mamaevb

a Faculty of Mechanics and Mathematics, Department of Topology and Aplications, M. V. Lomonosov Moscow State University, Vorob'ievy Gory, Moscow, Russia, 119899
b Laboratory of Dynamical Chaos and Non Linearity, Udmurt State University, Universitetskaya, 1, Izhevsk, Russia, 426034

Аннотация: 1.Classificaton of the algebra of n vortices on a plane 2.Solvable problems of vortex dynamics 3.Algebraization and reduction in a three-body problem The work [13] introduces a naive description of dynamics of point vortices on a plane in terms of variables of distances and areas which generate Lie–Poisson structure. Using this approach a qualitative description of dynamics of point vortices on a plane and a sphere is obtained in the works [14,15]. In this paper we consider more formal constructions of the general problem of n vortices on a plane and a sphere. The developed methods of algebraization are also applied to the classical problem of the reduction in the three-body problem.

MSC: 76C05

Поступила в редакцию: 22.03.1999

Язык публикации: английский

DOI: 10.1070/RD1999v004n01ABEH000097



Реферативные базы данных:


© МИАН, 2024