RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 1999, том 4, выпуск 2, страницы 16–43 (Mi rcd900)

Эта публикация цитируется в 11 статьях

Integrable and non-integrable deformations of the skew Hopf bifurcation

H. W. Broera, F. Takensa, F. O. O. Wagenerb

a University of Groningen, Department of Mathematics, P.O. Box 800, 9700 AV Groningen, Netherlands
b Mathematics Institute, University of Warwick, Coventry CV4 7AL, UK

Аннотация: In the skew Hopf bifurcation a quasi-periodic attractor with nontrivial normal linear dynamics loses hyperbolicity. Periodic, quasi-periodic and chaotic dynamics occur, including motion with mixed spectrum. The case of 3-dimensional skew Hopf bifurcation families of diffeomorphisms near integrability is discussed, surveying some recent results in a broad perspective. One result, using KAM-theory, deals with the persistence of quasi-periodic circles. Other results concern the bifurcations of periodic attractors in the case of resonance.

MSC: 34C15, 34C20, 58F27, 70H05

Поступила в редакцию: 29.07.1999

Язык публикации: английский

DOI: 10.1070/RD1999v004n02ABEH000103



Реферативные базы данных:


© МИАН, 2024