RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 1999, том 4, выпуск 3, страницы 35–44 (Mi rcd910)

Эта публикация цитируется в 6 статьях

On Integrals of the Third Degree in Momenta

H. R. Dullina, V. S. Matveevb, P. Ĭ. Topalovc

a Department of Applied Mathematics, University of Colorado
b Institut f. Theoretische Physik, Universität Bremen
c Institute of Mathematics and Informatics, BAS, Acad. G. Bonchev Str., bl. 8, Soa, 1113, Bulgaria

Аннотация: Consider a Riemannian metric on a surface, and let the geodesic flow of the metric have a second integral that is a third degree polynomial in momenta. Then we can naturally construct a vector field on the surface. We show that the vector field preserves the volume of the surface, and therefore is a Hamiltonian vector field. As examples we treat the Goryachev–Chaplygin top, the Toda lattice and the Calogero–Moser system, and construct their global Hamiltonians. We show that the simpliest choice of Hamiltonian leads to the Toda lattice.

MSC: 58F, 70H

Поступила в редакцию: 31.08.1998

Язык публикации: английский

DOI: 10.1070/RD1999v004n03ABEH000114



Реферативные базы данных:


© МИАН, 2024