RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 1999, том 4, выпуск 4, страницы 19–38 (Mi rcd917)

Эта публикация цитируется в 9 статьях

Nombre de Rotation des Diffeomorphismes du Cercle et Mesures Automorphes

R. Douadya, J.-C. Yoccozb

a C.N.R.S. et C.M.L.A., Ecole Normale Supérieure de Cachan, 61 av. du Pdt. Wilson, 94235 Cachan, France
b Collège de France, 3 rue d'Ulm, 75005 Paris, France

Аннотация: Let $f$ be a $C^1$-diffeomorphism of the circle $\mathbb{T}^1 = \mathbb{R} / \mathbb{Z}$ with an irrational rotation number. We show that, for every real number $s$, there exists a probability measure $\mu_s$, unique if $f$ is $C^2$, that satisfies, for any function $\varphi \in C^0 (\mathbb{T}^1)$:
$$\int \limits_{\mathbb{T}^1} \varphi d \mu_s=\int \limits_{\mathbb{T}^1} \varphi \circ f (Df)^s d \mu_s.$$
This measure continuously depends on the pair $(s,f)$ when one considers the weak topology on measures and the $C^1$-topology on diffeomorphisms. Examples are given where uniqueness fails with $f$ of class $C^1$. These results partially extend to the case of a rational rotation number for non degenerate semi-stable diffeomorphisms of the circle. We then show that the set of diffeomorphisms that have a given irrational rotation number has a tangent hyperplane at any $C^2$-diffeomorphism, the direction of which is the kernel of $\mu{-1}$.

MSC: 58F08

Поступила в редакцию: 04.10.1999

Язык публикации: английский

DOI: 10.1070/RD1999v004n04ABEH000129



Реферативные базы данных:


© МИАН, 2024