RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 1998, том 3, выпуск 2, страницы 30–45 (Mi rcd937)

Эта публикация цитируется в 48 статьях

Geodesical equivalence and the Liouville integration of the geodesic flows

V. S. Matveeva, P. Ĭ. Topalovb

a Max-Planck-Institute f. Mathematik, Gottfried-Claren-Strasse 26, 53225 Bonn
b Institute of Mathematics and Informatics, BAS, Acad. G.Bonchev Str., bl. 8, Sofia, 1113, Bulgaria

Аннотация: We suggest a simple approach for obtaining integrals of Hamiltonian systems if there is known a trajectorian map of two Hamiltonian systems. An explicite formila is given. As an example, it is proved that if on a manifold are given two Riemannian metrics which are geodesically equivalent then there is a big family of integrals. Our theorem is a generalization of the well-known Painleve–Liouville theorems.

MSC: 58F17, 53C22

Поступила в редакцию: 02.02.1998

Язык публикации: английский

DOI: 10.1070/RD1998v003n02ABEH000069



Реферативные базы данных:


© МИАН, 2024