RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 1998, том 3, выпуск 3, страницы 32–44 (Mi rcd946)

Эта публикация цитируется в 2 статьях

On the 70th birthday of J.Moser

The role of complex-time singularities in chaotic dynamics

A. Gorielyab, M. Taborab

a University of Arizona, Department of Mathematics
b Program in Applied Mathematics, Building 89 , Tucson, AZ85721, USA

Аннотация: The analysis of complex-time singularities has proved to be the most useful tool for the analysis of integrable systems. Here, we demonstrate its use in the analysis of chaotic dynamics. First, we show that the Melnikov vector, which gives an estimate of the splitting distance between invariant manifolds, can be given explicitly in terms of local solutions around the complex-time singularities. Second, in the case of exponentially small splitting of invariant manifolds, we obtain sufficient conditions on the vector field for the Melnikov theory to be applicable. These conditions can be obtained algorithmically from the singularity analysis.

MSC: 32S70, 34A20

Поступила в редакцию: 10.08.1998

Язык публикации: английский

DOI: 10.1070/RD1998v003n03ABEH000078



Реферативные базы данных:


© МИАН, 2024