RUS  ENG
Полная версия
ЖУРНАЛЫ // Regular and Chaotic Dynamics // Архив

Regul. Chaotic Dyn., 2009, том 14, выпуск 4-5, страницы 431–454 (Mi rcd958)

Эта публикация цитируется в 29 статьях

Proceedings of GDIS 2008, Belgrade

Bi-Hamiltonian structures and singularities of integrable systems

A. V. Bolsinova, A. A. Oshemkovb

a School of Mathematics, Loughborough University, Ashby Road, Loughborough, LE11 3TU, UK
b Department of Mathematics and Mechanics, M.V. Lomonosov Moscow State University, Moscow, 119899, Russia

Аннотация: A Hamiltonian system on a Poisson manifold $M$ is called integrable if it possesses sufficiently many commuting first integrals $f_1, \dots f_s$ which are functionally independent on $M$ almost everywhere. We study the structure of the singular set $K$ where the differentials $df_1, \dots, df_s$ become linearly dependent and show that in the case of bi-Hamiltonian systems this structure is closely related to the properties of the corresponding pencil of compatible Poisson brackets. The main goal of the paper is to illustrate this relationship and to show that the bi-Hamiltonian approach can be extremely effective in the study of singularities of integrable systems, especially in the case of many degrees of freedom when using other methods leads to serious computational problems. Since in many examples the underlying bi-Hamiltonian structure has a natural algebraic interpretation, the technology developed in this paper allows one to reformulate analytic and topological questions related to the dynamics of a given system into pure algebraic language, which leads to simple and natural answers.

Ключевые слова: integrable Hamiltonian systems, compatible Poisson structures, Lagrangian fibrations, bifurcations, semisimple Lie algebras.

MSC: 37K10, 37J35, 37J20, 17B80

Поступила в редакцию: 19.05.2009
Принята в печать: 10.06.2009

Язык публикации: английский

DOI: 10.1134/S1560354709040029



Реферативные базы данных:


© МИАН, 2024