Аннотация:
Уравнение тетраэдров Замолодчикова наследует почти все богатство структур и сюжетов, в которых фигурирует уравнение Янга–Бакстера. Вместе с тем этот переход символизирует рост порядка задачи, шаг от уравнения Янга–Бакстера к локальному уравнению Янга–Бакстера, от алгебры Ли к $2$-Ли алгебре, от обычных узлов в $\mathbb{R}^3$ к $2$-узлам в $\mathbb{R}^4$. Мы проследим за этими переходами в нескольких примерах, а также поговорим о проявлении уравнения тетраэдров в давно стоящем вопросе интегрируемости трехмерной модели Изинга и связанной с ней модели теории нейронных сетей – модели Хопфилда на двумерной решетке.
Библиография: 82 названия.
Ключевые слова:уравнение тетраэдров, $2$-узлы, интегрируемые модели статистической физики, модель Хопфилда.