RUS  ENG
Полная версия
ЖУРНАЛЫ // Успехи математических наук // Архив

УМН, 2022, том 77, выпуск 1(463), страницы 109–176 (Mi rm10019)

Эта публикация цитируется в 17 статьях

Левоинвариантные задачи оптимального управления на группах Ли: классификации и задачи, интегрируемые в элементарных функциях

Ю. Л. Сачков

Институт программных систем им. А. К. Айламазяна Российской академии наук

Аннотация: Левоинвариантные задачи оптимального управления на группах Ли образуют важный класс задач с большой группой симметрий. Они интересны в теоретическом плане, так как часто допускают полное исследование и на этих модельных задачах можно изучить общие закономерности. В частности, задачи на нильпотентных группах Ли доставляют фундаментальную нильпотентную аппроксимацию общих задач. Левоинвариантные задачи также часто возникают в приложениях: в классической и квантовой механике, геометрии, робототехнике, моделях зрения и обработке изображений.
Цель данной работы – дать обзор основных понятий, методов и результатов, относящихся к левоинвариантным задачам оптимального управления на группах Ли, интегрируемым в элементарных функциях. Основное внимание уделено описанию экстремальных траекторий и их оптимальности, времени разреза и множества разреза, оптимального синтеза. Также затрагиваются вопросы классификации левоинвариантных субримановых задач на группах Ли размерности 3, 4.
Библиография: 91 название.

Ключевые слова: оптимальное управление, геометрическая теория управления, левоинвариантные задачи, субриманова геометрия, группы Ли, оптимальный синтез.

УДК: 517.977

MSC: Primary 53C17; Secondary 22E25, 49K15

Поступила в редакцию: 18.05.2021

DOI: 10.4213/rm10019


 Англоязычная версия: Russian Mathematical Surveys, 2022, 77:1, 99–163

Реферативные базы данных:


© МИАН, 2024