Эта публикация цитируется в
6 статьях
Конечнозонный подход в периодической задаче Коши для $(2+1)$-мерных аномальных волн фокусирующего уравнения Дэви–Стюартсона 2
П. Г. Гриневичa,
П. М. Сантиниbc a Математический институт им. В. А. Стеклова Российской академии наук
b Dipartimento di Fisica, Università di Roma "La Sapienza", Roma, Italy
c Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Roma,
Roma, Italy
Аннотация:
Фокусирующее нелинейное уравнение Шрёдингера (НУШ) является простейшей универсальной моделью, описывающей модуляционную неустойчивость (МН) квазимонохроматических волн в слабонелинейных средах в размерности
$1+1$, тогда как МН считается основным физическим механизмом, ответственным за рождение аномальных волн (АВ, волн-убийц) в природе. Опираясь на недавно развитую аналитическую теорию периодических АВ в фокусирующем НУШ, в данной работе мы развиваем аналогичную теорию в размерности
$2+1$, концентрируясь на фокусирующем уравнении Дэви–Стюартсона 2 (ДС2), которое является интегрируемым
$(2+1)$-мерным обобщением фокусирующего НУШ. Точнее говоря, мы используем конечнозонную теорию для построения в главном порядке решения двоякопериодической по пространственным переменным задачи Коши для фокусирующего уравнения ДС2 в предположении, что в начальный момент имеется малое возмущение неустойчивого фона. Эту задачу мы называем двоякопериодической задачей Коши для АВ. Как и в случае НУШ, мы показываем, что решение данной задачи Коши в главном порядке выражается в терминах элементарных функций начальных данных.
Библиография: 86 названий.
Ключевые слова:
уравнение Дэви–Стюартсона, волны-убийцы (аномальные волны) в многомерных задачах, двоякопериодическая задача Коши, конечнозонное интегрирование, асимптотические решения.
УДК:
517.958+517.955.8
MSC: Primary
35Q58; Secondary
35C08,
35C20,
37K15,
37K20 Поступила в редакцию: 23.06.2022
DOI:
10.4213/rm10077