RUS  ENG
Полная версия
ЖУРНАЛЫ // Успехи математических наук // Архив

УМН, 2023, том 78, выпуск 4(472), страницы 3–52 (Mi rm10081)

Averaging and mixing for stochastic perturbations of linear conservative systems

G. Huangab, S. B. Kuksincb

a School of Mathematics and Statistics, Beijing Institute of Technology, Beijing, China
b Peoples' Friendship University of Russia (RUDN University), Moscow, Russia
c Université Paris-Diderot (Paris 7), UFR de Mathématiques, Paris, France

Аннотация: We study stochastic perturbations of linear systems of the form
\begin{equation*} dv(t)+Av(t)\,dt=\varepsilon P(v(t))\,dt+\sqrt{\varepsilon}\,\mathcal{B}(v(t))\,dW (t), \qquad v\in\mathbb{R}^D, \tag{*} \end{equation*}
where $A$ is a linear operator with non-zero imaginary spectrum. It is assumed that the vector field $P(v)$ and the matrix function $\mathcal{B}(v)$ are locally Lipschitz with at most polynomial growth at infinity, that the equation is well posed and a few of first moments of the norms of solutions $v(t)$ are bounded uniformly in $\varepsilon$. We use Khasminski's approach to stochastic averaging to show that, as $\varepsilon\to0$, a solution $v(t)$, written in the interaction representation in terms of the operator $A$, for $0\leqslant t\leqslant\text{Const}\cdot\varepsilon^{-1}$ converges in distribution to a solution of an effective equation. The latter is obtained from $(*)$ by means of certain averaging. Assuming that equation $(*)$ and/or the effective equation are mixing, we examine this convergence further.
Bibliography: 27 titles.

Ключевые слова: averaging, mixing, stationary measures, effective equations, uniform in time convergence.

УДК: 517.928.7+519.216

MSC: 34C29, 34F05, 34F10

Поступила в редакцию: 25.06.2022

Язык публикации: английский

DOI: 10.4213/rm10081


 Англоязычная версия: Russian Mathematical Surveys, 2023, 78:4, 585–633

Реферативные базы данных:


© МИАН, 2024