Аннотация:
На выпуклой гладкой кривой на плоскости найдется по меньшей мере четыре точки, в которых ее кривизна достигает экстремума; кроме того, в случае кривой общего положения у нее найдется эквидистанта, имеющая по меньшей мере четыре точки возврата. В. И. Арнольд сформулировал на языке контактной топологии гипотезы о коориентированных фронтах на плоскости, обобщающие эти классические утверждения – гипотезу о четырех вершинах и гипотезу о четырех точках возврата.
Настоящая статья посвящена доказательству этих гипотез и некоторых смежных утверждений. Основным ингредиентом доказательства, наряду с несложным обобщением теории Штурма–Гурвица, является построенная в работе теория псевдоинволюций, доставляющая описание комбинаторной структуры фронтов на цилиндре. Обсуждается также связь теории псевдоинволюций с перестройками морсовских комплексов в однопараметрических семействах.
Библиография: 25 названий.