Аннотация:
Описан широкий класс краевых задач, для которых применение эллиптической теории сводится к элементарным алгебраическим операциям. Класс характеризуется
полиномиальным свойством: полуторалинейная форма, отвечающая задаче, вырождается только на конечномерном линеале $\mathscr P$ векторных полиномов. Такое свойство
обеспечивает эллиптичность краевой задачи, а ее ядро и коядро выражаются в терминах $\mathscr P$. Для областей с кусочно гладкими границами или выходами на бесконечность (коническими, цилиндрическими и периодическими) дополнительно предоставляются фрагменты асимптотических формул для решений и конкретизируются общие условные теоремы о фредгольмовости (в том числе, за счет модификации обычных весовых норм), а также вычисляется индекс оператора краевой задачи. Полиномиальное свойство помогает выполнить асимптотический анализ краевых задач в тонких областях и их сочленениях. Именно, несложные манипуляции с $\mathscr P$ дают возможность при редукции размерности предсказать размеры результирующей системы и порядки входящих в нее дифференциальных операторов, устанавливают ее эллиптичность и предоставляют полную информацию о строении пограничных слоев. Приведенные
результаты иллюстрируются примерами из теории упругости и гидромеханики.
Библиография: 128 названий.