RUS  ENG
Полная версия
ЖУРНАЛЫ // Успехи математических наук // Архив

УМН, 2002, том 57, выпуск 5(347), страницы 79–138 (Mi rm553)

Эта публикация цитируется в 34 статьях

О классификации лоренцевых алгебр Каца–Муди

В. А. Гриценкоab, В. В. Никулинcd

a University of Sciences and Technologies
b Санкт-Петербургское отделение Математического института им. В. А. Стеклова РАН
c Математический институт им. В. А. Стеклова РАН
d University of Liverpool

Аннотация: Рассматривается общая теория лоренцевых алгебр Каца–Муди, которая должна служить гиперболическим аналогом классических теорий конечномерных полупростых и аффинных алгебр Каца–Муди. Первые примеры лоренцевых алгебр Каца–Муди были найдены Борчердсом. Рассматриваются общие результаты конечности для множества лоренцевых алгебр Каца–Муди ранга $\geqslant 3$ и проблема их классификации. В качестве примера дается классификация лоренцевых алгебр Каца–Муди ранга три с гиперболической решеткой корней $S_t^*$, решеткой симметрии $L_t^*$ и группой симметрии $\widehat O^+(L_t)$, $t\in\mathbb N$, где
\begin{gather*} H=\left(\begin{smallmatrix}0&-1\\-1&0\end{smallmatrix}\right), \\ S_t=H\oplus\langle 2t\rangle=\left(\begin{smallmatrix}0&0&-1\\0&2t&0\\-1&0&0\end{smallmatrix}\right), \quad L_t=H\oplus S_t=\left(\begin{smallmatrix}0&0&0&0&-1\\0&0&0&-1&0\\0&0&2t&0&0\\0&-1&0&0&0\\-1&0&0&0&0\end{smallmatrix}\right) \end{gather*}
и $\widehat O^+(L_t)=\{g\in O^+(L_t)\mid g$ тривиален на $L_t^*/L_t\}$ – расширенная парамодулярная группа. Вероятно, это первый пример классификации большого класса лоренцевых алгебр Каца–Муди.

УДК: 512.818.4+512.817.72+511.334+512.774

MSC: Primary 17B67; Secondary 11F22, 11F50, 14J15, 14J28, 81R10

Поступила в редакцию: 17.01.2002

DOI: 10.4213/rm553


 Англоязычная версия: Russian Mathematical Surveys, 2002, 57:5, 921–979

Реферативные базы данных:


© МИАН, 2024