RUS  ENG
Полная версия
ЖУРНАЛЫ // Успехи математических наук // Архив

УМН, 1968, том 23, выпуск 2(140), страницы 3–60 (Mi rm5609)

Эта публикация цитируется в 73 статьях

Неразложимые представления группы Лоренца

И. М. Гельфанд, В. А. Пономарев


Аннотация: Пусть $L$ – алгебра Ли группы Лоренца или, что то же самое, группы $SL(2,C)$. Обозначим через $L_k$ алгебру Ли ее максимальной компактной подгруппы, т.е. алгебру Ли группы $SU(2)$. Пусть $M_i$ – конечномерные неприводимые $L_k$-модули (конечномерные представления алгебры Ли $L_k$). Рассмотрим некоторый $L$-модуль $M$. Авторы называют модуль $M$ модулем Хариш-Чандры, если, будучи рассматриваем как $L_k$-модуль,он может быть записан в виде суммы
$$ \displaystyle M=\bigoplus_i{M}_i $$
– суммы конечномерных неприводимых $L_k$-модулей $M_i$. При этом для каждого $M_i$ в разложении $M$ встречается лишь конечное число $L_k$ – подмодулей, эквивалентных $M_{i_0}$.
Модуль Хариш-Чандры называется неразложимым, если он не может быть разложен в прямую сумму $L$-подмодулей. В данной работе полностью описаны все неразложимые модули Хариш-Чандры над $L$. При этом оказывается, что имеется два типа неразложимых модулей Хариш-Чандры. Модули первого типа – неособые неразложимые модули Хариш-Чандры определяются следующими инвариантами: целым числом $2l_0$, $l_0\geqslant 0)$, комплексным числом $l_1$ и целым числом $n$. Первые два из этих инвариантов уже встречались как инварианты неприводимых представлений группы Лоренца (см. [2]). Случай неособых модулей был ранее в несколько другой постановке разобран Д. П. Желобенко [3].
Наиболее интересен случай особых модулей Хариш-Чандры. Решение этой задачи сводится к нетривиальной задаче линейной алгебры, разобранной подробно в главе II. Инвариантами особых неразложимых модулей являются по-прежнему числа $l_0\geqslant 0$, $2l_0$ – целое и $2l_0-|l_1|$ – целое.
Однако вместо одного дополнительного инварианта $n$ здесь появляется много инвариантов. Возможны два типа особых модулей: особые модули первого рода и особые модули второго рода.
Особые модули первого рода характеризуются, кроме указанных инвариантов $l_0$ и $l_1$ еще набором целых чисел произвольной длины. Особые неразложимые модули второго рода характеризуются следующим набором инвариантов: указанными выше числами $l_0$, $l_1$ набором целых чисел $j_1,j_2,\dots,j_k$, целым числом $q$ и еще одним произвольным комплексным параметром $\mu$. Наличие этого параметра особенно интересно, ибо оно показывает возможность при фиксированных числах $l_0$, и $l_1$ деформировать неразложимый модуль.
Задачи линейной алгебры, которые используются при установлении изложенных выше фактов, представляют самостоятельный интерес благодаря тому, что авторы развивают и используют аппарат теории линейных отношений Маклейна [4].

УДК: 519.4

MSC: 22E43, 20E28, 16P70, 16P10

Поступила в редакцию: 18.12.1967


 Англоязычная версия: Russian Mathematical Surveys, 1968, 23:2, 1–58

Реферативные базы данных:


© МИАН, 2024