RUS  ENG
Полная версия
ЖУРНАЛЫ // Успехи математических наук // Архив

УМН, 1968, том 23, выпуск 3(141), страницы 67–121 (Mi rm5632)

Эта публикация цитируется в 12 статьях

Краевые задачи со сдвигом для аналитических функций и сингулярные функциональные уравнения

Э. И. Зверович, Г. С. Литвинчук


Аннотация: Рассматриваются методы исследования основных краевых задач со сдвигом на плоскости и римановой поверхности и сингулярных интегро-функциональных уравнений со сдвигом.
В § 1–3 излагается применение метода конформного склеивания к задачам со сдвигом на римановой поверхности. § 4 посвящен изложению классического метода интегральных уравнений применительно к одной из задач (типа задачи Карлемана).
В § § 5 и 6 исследуются сингулярные интегральные уравненения со сдвигом, удовлетворяющим условию Карлемана, и соответствующие общие краевые задачи. Основной метод – сведение к системам сингулярных уравнений с ядром Коши, дополненный применением теоремы об устойчивости индекса, позволяет получить здесь условия нетеровости и вычислить индекс. В § 6 вводится понятие устойчивости задачи со сдвигом Карлемана, аналогичное понятию устойчивости частных индексов задачи Римана; доказывается достаточный признак устойчивости для задачи А. И. Маркушевича.
В конце § 6 и в § 7 дается обзор работ, посвященных излагаемой тематике, но не вошедших в основную часть статьи.

УДК: 517.948.32+517.544

MSC: 58J32, 35L20, 35J25, 58J45, 58J05, 45Exx

Поступила в редакцию: 09.09.1965


 Англоязычная версия: Russian Mathematical Surveys, 1968, 23:3, 67–124

Реферативные базы данных:


© МИАН, 2024