Аннотация:
100-летие со дня рождения П. С. Новикова дает волнующий повод изложить с современной точки зрения и с полными доказательствами, по-видимому, окончательные решения тех классических проблем о свойствах регулярности точечных
множеств, которые были сформулированы Лузиным, а в некоторой мере еще раньше Адамаром, Борелем, Лебегом, и относятся к дескриптивной теории множеств. Решения этих
проблем начались с пионерских работ Александрова, Суслина, Лузина 1916–17 годов, а затем были продвинуты в фундаментальных исследованиях Гёделя, Новикова, Коэна и их последователей. Это направление в математике отличается тем, что, с одной стороны, является обычной математической теорией о естественных свойствах точечных множеств и
функций, далекой от общей теории множеств или таких внутренних проблем математической логики, как, например, непротиворечивость или теоремы Гёделя, а с другой стороны, оно стало местом приложения наиболее тонких средств современной математической логики.
Библиография: 97 названий.