Аннотация:
Основное содержание статьи заключено в доказательстве
центральной предельной теоремы для положения на решетке $\mathbb Z^d$ частицы,
взаимодействующей со случайной “средой” в течение
длительного промежутка времени (и выходящей из фиксированной точки решетки).
Рассмотрены два случая: конфигурация “среды” (т. е. случайного поля)
фиксирована во всех точках “пространства-времени” $\mathbb Z^{d+1}$
(так называемая quenched-модель) или же поле изменяется со временем
вместе с положением частицы так, что пара (поле+частица) образует
марковскую цепь (annealed-модель). Для quenched-моделей изучены два случая:
значения поля во всех точках “пространства-времени” независимы и одинаково распределены или же значения поля связаны
в однородную марковскую цепь. При этом центральная предельная теорема
с одним и тем же предельным законом верна в случае quenched-моделей
для почти всех конфигураций “среды”, а в случае annealed-моделей
для любого начального распределения поля. Кроме центральной предельной теоремы
в статье затронуты кратко и некоторые другие темы,
касающиеся упомянутых моделей (убывание корреляций, большие уклонения,
“поле с точки зрения частицы” и т. д.).
Библиография: 25 названий.