Аннотация:
Первая часть работы посвящена приложениям теории фробениусовых многообразий к задаче классификации гамильтоновых систем уравнений в частных производных, зависящих от малого параметра. Попутно развивается теория деформаций интегрируемых иерархий, в том числе так называемых иерархий топологического типа. К их числу относятся как хорошо известные иерархии, такие как иерархия уравнения Кортевега–де Фриза, нелинейного уравнения Шрёдингера, Тоды, Буссинеска и т. д., так и ряд новых иерархий, некоторые из которых могут играть важную роль в приложениях. Во второй части работы мы изучаем свойства решений этих уравнений, уделяя особое внимание сопоставлению свойств решений возмущенных и невозмущенных уравнений в окрестности точки градиентной катастрофы. Формулируется гипотеза универсальности, описывающая различные типы критического поведения решений возмущенной системы в окрестности точки градиентной катастрофы невозмущенной системы.