Аннотация:
Во многих задачах “вещественные” спектральные данные для конечнозонных периодических операторов (состоящие из римановой поверхности с отмеченной “бесконечно удаленной точкой”, локального параметра в этой точке и дивизора полюсов) порождают операторы с вещественными сингулярными коэффициентами. Эти операторы не являются самосопряженными в обычном гильбертовом пространстве функций переменной $x$ (с положительной метрикой). В частности, эта ситуация имеет место для операторов Ламе с эллиптическим потенциалом $n(n+1)\wp(x)$, волновые функции которых были найдены Эрмитом в XIX веке. Однако, в соответствии с идеями работ [1]–[4], именно такие функции Бейкера–Ахиезера служат правильными аналогами дискретных и непрерывных базисов Фурье на римановых поверхностях. Оказывается, что для рода $g>0$ эти операторы симметричны относительно неположительно определенного (индефинитного) скалярного произведения, описанного в данной работе. Аналог непрерывного преобразования Фурье оказывается изометрией в этой метрике. Мы также описываем образ этого преобразования Фурье в пространстве функций переменной $x\in\mathbb R$.
Библиография: 24 названия.
Ключевые слова:спектральная теория, сингулярные конечнозонные операторы, индефинитные гильбертовы пространства, непрерывные базисы Фурье–Лорана на римановых поверхностях, потенциалы Ламе, модель Калоджеро–Мозера.