Аннотация:
Рассматриваемое в данном обзоре обобщение интерполяционного метода средних Лионса–Петре уступает в общности известным с 1970-х годов обобщениям этого метода. Но этот уровень обобщения достаточен для того, чтобы охватить наиболее естественные с точки зрения приложений пространства Лоренца, пространства Орлича и их аналоги. Рассматриваемые здесь пространства $\varphi(X_0,X_1)_{p_0,p_1}$ имеют три параметра: два равноправных положительных числовых $p_0$, $p_1$ и функциональный $\varphi$. Эти пространства при $p_0\ne p_1$ можно рассматривать в качестве аналогов пространств Орлича при вещественном методе интерполяции. Для семейства пространств $\varphi(X_0,X_1)_{p_0,p_1}$ установлены критерии вложения, оптимальные интерполяционные теоремы, уточняющие все известные интерполяционные теоремы для операторов, действующих в парах весовых пространств $L_p$, и распространяющие их за пределы шкал пространств. Главной особенностью является то, что функциональный параметр $\varphi$ может быть произвольным естественным функциональным параметром при интерполяции.
Библиография: 43 названия.
Ключевые слова:интерполяционные пространства, интерполяционные функторы
с функциональными параметрами, интерполяционные орбиты,
орбиты относительно операторов Неймана–Шаттена,
оптимальные интерполяционные теоремы,
теоремы вложения для пространств Орлича–Соболева.