RUS  ENG
Полная версия
ЖУРНАЛЫ // Успехи математических наук // Архив

УМН, 2014, том 69, выпуск 5(419), страницы 3–80 (Mi rm9603)

Эта публикация цитируется в 32 статьях

Усреднение, прохождение через резонансы и захват в резонанс в двухчастотных системах

А. И. Нейштадтab

a Институт космических исследований РАН
b Loughborough University, UK

Аннотация: Малые возмущения, наложенные на интегрируемую систему, вызывают медленную эволюцию. Для приближенного описания этой эволюции классический метод усреднения предписывает усреднить скорость эволюции по фазам невозмущенного движения. Этот простой рецепт не всегда приводит к правильному результату из-за влияния возникающих в процессе эволюции резонансов. Явление захвата в резонанс состоит в том, что система начинает эволюционировать так, чтобы поддерживалась раз возникшая резонансность. В статье рассматривается применение метода усреднения для описания эволюции в двухчастотных системах. Предполагается, что траектории усредненной системы трансверсально пересекают поверхности уровня отношения частот и выполнены еще некоторые условия общности положения. Скорость эволюции характеризуется малым параметром $\varepsilon$. Основное содержание статьи составляет доказательство следующего результата: вне множества начальных данных меры порядка $\sqrt \varepsilon$ метод усреднения описывает эволюцию с точностью $O(\sqrt \varepsilon\,|\ln\varepsilon|)$ на временах порядка $1/\varepsilon$. Эта оценка неулучшаема. Исключительное множество меры порядка $\sqrt \varepsilon$ включает начальные данные для фазовых точек, захватываемых в резонанс. Дано описание движения таких фазовых точек. Дан обзор смежных результатов об усреднении. Приведены примеры захвата в резонанс в задачах динамики заряженных частиц. Сформулированы некоторые открытые задачи.
Библиография: 65 названий.

Ключевые слова: метод усреднения, резонанс.

MSC: Primary 34C29, 34F15, 70K65; Secondary 70H11, 78A35

Поступила в редакцию: 22.06.2014

DOI: 10.4213/rm9603


 Англоязычная версия: Russian Mathematical Surveys, 2014, 69:5, 771–843

Реферативные базы данных:


© МИАН, 2024