Аннотация:
Обзор посвящен результатам, связанным с метрическими свойствами классических цепных дробей и трехмерных цепных дробей Вороного–Минковского. Основное внимание уделяется применению аналитических методов, основанных на оценках сумм Клостермана. В статье развивается аппарат, предназначенный для решения задач на трехмерных решетках. В основе подхода лежит идея редукции к предыдущей размерности, применявшаяся ранее Линником и Скубенко при исследовании целочисленных решений детерминантного уравнения $\det X=P$, где $X$ – матрица размера $3\times 3$ с независимыми коэффициентами и $P$ – растущий параметр.
Предлагаемый метод применяется для изучения статистических свойств трехмерных цепных дробей Вороного–Минковского в решетках с фиксированным определителем. В частности, для среднего числа базисов Минковского доказывается асимптотическая формула со степенным понижением в остаточном члене. Этот результат можно считать трехмерным аналогом теоремы Портера о средней длине конечных цепных дробей.
Библиография: 127 названий.
Ключевые слова:трехмерные цепные дроби, решетки, суммы Клостермана, статистики Гаусса–Кузьмина.