RUS  ENG
Полная версия
ЖУРНАЛЫ // Успехи математических наук // Архив

УМН, 2017, том 72, выпуск 2(434), страницы 3–66 (Mi rm9759)

Эта публикация цитируется в 33 статьях

Когомологическая жёсткость многообразий, задаваемых трёхмерными многогранниками

В. М. Бухштаберabc, Н. Ю. Ероховецb, М. Масудаd, Т. Е. Пановbec, С. Пакd

a Математический институт им. В. А. Стеклова Российской академии наук
b Московский государственный университет им. М. В. Ломоносова
c Институт проблем передачи информации им. А. А. Харкевича РАН
d Osaka City University, Osaka, Japan
e Институт теоретической и экспериментальной физики им. А. И. Алиханова

Аннотация: Семейство замкнутых многообразий называется когомологически жёстким, если изоморфизм колец когомологий влечёт диффеоморфизм для любых двух многообразий из этого семейства. В центре внимания обзора – результаты о когомологической жёсткости для широких семейств шестимерных и трёхмерных многообразий, задаваемых трёхмерными многогранниками. Рассматривается класс $\mathscr{P}$ трёхмерных комбинаторных простых многогранников $P$, отличных от тетраэдра, грани которых не образуют $3$- и $4$-поясов. Этот класс содержит все математические фуллерены, т. е. простые трёхмерные многогранники, имеющие лишь пятиугольные и шестиугольные грани. Согласно теореме Погорелова, многогранник из класса $\mathscr{P}$ допускает прямоугольную реализацию в пространстве Лобачевского, которая единственна с точностью до изометрии. Изучаемые семейства гладких многообразий ассоциированы с многогранниками из класса $\mathscr{P}$. Первое семейство составляют трёхмерные малые накрытия над многогранниками из $\mathscr{P}$ или, эквивалентно, гиперболические 3-многообразия типа Лёбелля. Второе семейство состоит из шестимерных квазиторических многообразий над многогранниками из $\mathscr{P}$. Наш основной результат заключается в том, что оба эти семейства являются когомологически жёсткими, т. е. два многообразия $M$ и $M'$ из любого из этих семейств диффеоморфны тогда и только тогда, когда изоморфны их кольца когомологий. Более того, доказывается, что если $M$ и $M'$ диффеоморфны, то соответствующие многогранники $P$ и $P'$ комбинаторно эквивалентны. Эти результаты переплетаются с классическими сюжетами геометрии и топологии, которые составили обзорную часть нашей статьи. Речь идёт о комбинаторике трёхмерных многогранников, теореме о четырёх красках, асферических многообразиях, классификации гладких шестимерных многообразий и инвариантности классов Понтрягина. Доказательства в основной части статьи используют технику торической топологии.
Библиография: 68 названий.

Ключевые слова: квазиторическое многообразие, момент-угол-многообразие, гиперболическое многообразие, малое накрытие, простой многогранник, прямоугольный многогранник, кольцо когомологий, когомологическая жёсткость.

MSC: Primary 57R91, 57M50; Secondary 05C15, 14M25, 52A55, 52B10

Поступила в редакцию: 20.12.2016

DOI: 10.4213/rm9759


 Англоязычная версия: Russian Mathematical Surveys, 2017, 72:2, 199–256

Реферативные базы данных:


© МИАН, 2024